订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标Ⅲ)
大小:0B 11页 发布时间: 2024-01-27 14:28:55 18.18k 16.92k

6.(5分)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则()

A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1

【分析】求得函数y的导数,可得切线的斜率,由切线方程,可得ae+1+0=2,可得a,进而得到切点,代入切线方程可得b的值.

【解答】解:y=aex+xlnx的导数为y′=aex+lnx+1,

由在点(1,ae)处的切线方程为y=2x+b,

可得ae+1+0=2,解得a=e﹣1,

又切点为(1,1),可得1=2+b,即b=﹣1,

故选:D.

【点评】本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和运算能力,属于基础题.

7.(5分)函数y=在[﹣6,6]的图象大致为()

A. B.

C.⊈ D.

【分析】由y=的解析式知该函数为奇函数可排除C,然后计算x=4时的函数值,根据其值即可排除A,D.

【解答】解:由y=f(x)=在[﹣6,6],知

f(﹣x)=

∴f(x)是[﹣6,6]上的奇函数,因此排除C

又f(4)=,因此排除A,D.

故选:B.

【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.

8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()

A.BM=EN,且直线BM,EN是相交直线

B.BM≠EN,且直线BM,EN是相交直线

C.BM=EN,且直线BM,EN是异面直线

D.BM≠EN,且直线BM,EN是异面直线

【分析】推导出BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,从而直线BM,EN是相交直线,设DE=a,则BD=,BE=,从而BM≠EN.

【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,

∴BM⊂平面BDE,EN⊂平面BDE,

∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,

∴直线BM,EN是相交直线,

设DE=a,则BD=,BE=

∴BM=a,EN==a,

∴BM≠EN,

故选:B.

【点评】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.

9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()

A.2﹣ B.2﹣ C.2﹣ D.2﹣

【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441