若f(x)有三个零点,
只需,解得:0<k<,
故a∈(0,).
21.已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.
(1)求C的方程;
(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.
【分析】(1)根据e=,a2=25,b2=m2,代入计算m2的值,求出C的方程即可;
(2)设出P,Q的坐标,得到关于s,t,n的方程组,求出AP(8,1),AQ(11,2),从而求出△APQ的面积.
解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,
故C的方程是:+=1;
(2)由(1)A(﹣5,0),设P(s,t),点Q(6,n),
根据对称性,只需考虑n>0的情况,
此时﹣5<s<5,0<t≤,
∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,
又∵BP⊥BQ,∴s﹣5+nt=0②,
又+=1③,
联立①②③得或,
当时,AP(8,1),AQ(11,2),
∴S△APQ==|8×2﹣11×1|=,
同理可得当时,S△APQ=,
综上,△APQ的面积是.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程]
22.在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A,B两点.
(1)求|AB|;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
【分析】(1)可令x=0,求得t,对应的y;再令y=0,求得t,对应的x;再由两点的距离公式可得所求值;
(2)运用直线的截距式方程可得直线AB的方程,再由由x=ρcosθ,y=ρsinθ,可得所求极坐标方程.
解:(1)当x=0时,可得t=﹣2(1舍去),代入y=2﹣3t+t2,可得y=2+6+4=12,
当y=0时,可得t=2(1舍去),代入x=2﹣t﹣t2,可得x=2﹣2﹣4=﹣4,
所以曲线C与坐标轴的交点为(﹣4,0),(0,12),
则|AB|==4;
(2)由(1)可得直线AB过点(0,12),(﹣4,0),
可得AB的方程为﹣=1,
即为3x﹣y+12=0,
由x=ρcosθ,y=ρsinθ,
可得直线AB的极坐标方程为3ρcosθ﹣ρsinθ+12=0.
[选修4-5:不等式选讲]
23.设a,b,c∈R,a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c的最大值,证明:max{a,b,c}≥.