【分析】(1)将a+b+c=0平方之后,化简得到2ab+2ac+2bc=﹣(a2+b2+c2)<0,即可得证;
(2)利用反证法,假设a≤b<0<c<,结合条件推出矛盾.
【解答】证明:(1)∵a+b+c=0,∴(a+b+c)2=0,
∴a2+b2+c2+2ab+2ac+2bc=0,
∴2ab+2ac+2bc=﹣(a2+b2+c2),
∵abc=1,∴a,b,c均不为0,
∴2ab+2ac+2bc=﹣(a2+b2+c2)<0,
∴ab+ac+bc<0;
(2)不妨设a≤b<0<c<,则ab=>,
∵a+b+c=0,∴﹣a﹣b=c<,
而﹣a﹣b≥2>===,与假设矛盾,
故max{a,b,c}≥.