15.(共13分)
解:(I)设等差数列
∵
∴
又
∴
(II)由(I)知
∵
∴
∴
∴
16.(共13分)
【解析】(Ⅰ)
所以
(Ⅱ)由(Ⅰ)知
因为
要使得
所以
所以
17.(共13分)
(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.
第四类电影中获得好评的电影部数是200×0.25=50,
故所求概率为
(Ⅱ)方法一:由题意知,样本中获得好评的电影部数是
140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1
=56+10+45+50+160+51
=372.
故所求概率估计为
方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B.
没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.
由古典概型概率公式得
(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.
18.(共14分)
【解析】(Ⅰ)∵
∵底面
∴
(Ⅱ)∵底面
∵平面