点睛:识别、运行程序框图和完善程序框图的思路:
(1)要明确程序框图的顺序结构、条件结构和循环结构.
(2)要识别、运行程序框图,理解框图所解决的实际问题.
(3)按照题目的要求完成解答并验证.
4. 设,则“”是“”的
A. 充分而不必要条件
B. 必要而不重复条件
C. 充要条件
D. 既不充分也不必要条件
【答案】A
【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.
详解:绝对值不等式 ,
由 .
据此可知是的充分而不必要条件.
本题选择A选项.
点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.
5. 已知,,,则a,b,c的大小关系为
A. B. C. D.
【答案】D
【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.
详解:由题意结合对数函数的性质可知:
,,,
据此可得:.
本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
6. 将函数的图象向右平移个单位长度,所得图象对应的函数
A. 在区间上单调递增 B. 在区间上单调递减
C. 在区间上单调递增 D. 在区间上单调递减
【答案】A
【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.
详解:由函数图象平移变换的性质可知:
将的图象向右平移个单位长度之后的解析式为:
.
则函数的单调递增区间满足:,
即,
令可得一个单调递增区间为:.
函数的单调递减区间满足:,
即,
令可得一个单调递减区间为:.
本题选择A选项.