订单查询
首页 其他文档
普通高等学校招生全国统一考试(天津卷)数学(文史类)
大小:0B 4页 发布时间: 2024-01-27 14:55:15 11.7k 9.84k

二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.

(9)4–i (10)e (11)

(12) (13) (14)[,2]

三、解答题

(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分.

(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.

(Ⅱ)(i)解:从抽出的7名同学中随机抽取2名同学的所有可能结果为

{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.

(ii)解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.学@科网

所以,事件M发生的概率为P(M)=

(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.

(Ⅰ)解:在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=

(Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=

,可得.因为a.因此

所以,

(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.

(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.

(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.

在Rt△DAM中,AM=1,故DM=.因为AD⊥平面ABC,故AD⊥AC.

在Rt△DAN中,AN=1,故DN=

在等腰三角形DMN中,MN=1,可得

所以,异面直线BC与MD所成角的余弦值为

(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.

在Rt△CAD中,CD==4.

在Rt△CMD中,

所以,直线CD与平面ABD所成角的正弦值为

(18)本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.

(I)解:设等比数列的公比为q,由b1=1,b3=b2+2,可得.

因为,可得,故.所以.

设等差数列的公差为.由,可得.由,可得 从而,故,所以.

(II)解:由(I),知

可得

整理得 解得(舍),或.所以n的值为4.学&科网

(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.

(I)解:设椭圆的焦距为2c,由已知得,又由,可得,从而.

所以,椭圆的方程为.

(II)解:设点P的坐标为,点M的坐标为 ,由题意,

的坐标为的面积是面积的2倍,可得

从而,即.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441