订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标Ⅰ)
大小:0B 12页 发布时间: 2024-01-27 15:08:44 5.73k 3.76k

17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.

(1)求cos∠ADB;

(2)若DC=2,求BC.

18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.

(1)证明:平面PEF⊥平面ABFD;

(2)求DP与平面ABFD所成角的正弦值.

19.(12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).

(1)当l与x轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:∠OMA=∠OMB.

20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.

(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

21.(12分)已知函数f(x)=﹣x+alnx.

(1)讨论f(x)的单调性;

(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.

(1)求C2的直角坐标方程;

(2)若C1与C2有且仅有三个公共点,求C1的方程.

[选修4-5:不等式选讲](10分)

23.已知f(x)=|x+1|﹣|ax﹣1|.

(1)当a=1时,求不等式f(x)>1的解集;

(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.

全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()

A.0 B. C.1 D.

【考点】A8:复数的模.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;5N:数系的扩充和复数.

【分析】利用复数的代数形式的混合运算化简后,然后求解复数的模.

【解答】解:z=+2i=+2i=﹣i+2i=i,

则|z|=1.

故选:C.

【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.

2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁RA=()

A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}

【考点】1F:补集及其运算.菁优网版权所有

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441