棱CD1在左侧面的投影为BA1,
故选B.
【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.
4.(5分)(2016•天津)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()
A.﹣y2=1 B.x2﹣=1
C.﹣=1 D.﹣=1
【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.
【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,
∴c=,
∵双曲线的一条渐近线与直线2x+y=0垂直,
∴=,
∴a=2b,
∵c2=a2+b2,
∴a=2,b=1,
∴双曲线的方程为=1.
故选:A.
【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.
5.(5分)(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的 ()
A.充要条件 B.充分不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
【分析】直接根据必要性和充分判断即可.
【解答】解:设x>0,y∈R,当x=0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,
而“x>|y|”⇒“x>y”,
故“x>y”是“x>|y|”的必要不充分条件,
故选:C.
【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.
6.(5分)(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()
A.(﹣∞,) B.(﹣∞,)∪(,+∞) C.(,) D.(,+∞)
【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.
【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∵2|a﹣1|>0,f(﹣)=f(),
∴2|a﹣1|<=2.
∴|a﹣1|,
解得.
故选:C.
【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.
7.(5分)(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()
A.﹣ B. C. D.
【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.