【解答】解:如图,
∵D、E分别是边AB、BC的中点,且DE=2EF,
∴•==
==
===
=.
故选:B.
【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.
8.(5分)(2016•天津)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()
A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]
【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.
【解答】解:函数f(x)=+sinωx﹣=+sinωx=,
由f(x)=0,可得=0,
解得x=∉(π,2π),
∴ω∉∪∪∪…=∪,
∵f(x)在区间(π,2π)内没有零点,
∴ω∈∪.
故选:D.
【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.
二、填空题本大题6小题,每题5分,共30分
9.(5分)(2016•天津)i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.
【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
【解答】解:由(1+i)z=2,
得,
∴z的实部为1.
故答案为:1.
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
10.(5分)(2016•天津)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3.
【分析】先求导,再带值计算.
【解答】解:∵f(x)=(2x+1)ex,
∴f′(x)=2ex+(2x+1)ex,
∴f′(0)=2e0+(2×0+1)e0=2+1=3.
故答案为:3.
【点评】本题考查了导数的运算法则,属于基础题.
11.(5分)(2016•天津)阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.
【分析】根据循环结构,结合循环的条件,求出最后输出S的值.
【解答】解:第一次循环:S=8,n=2;
第二次循环:S=2,n=3;