∴bn+1﹣bn=1.
∴{bn}是以为首项,以1为公差的等差数列.
设{(﹣1)nbn2}的前n项和为Tn,则
Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)
=b1+b2+b3+b4…+b2n﹣1+b2n
==
=2n2.
【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.
19.(14分)(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.
【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;
(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.
【解答】解:(1)由+=,
得+=,
即=,
∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.
∴椭圆方程为;
(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),
设B(x1,y1),M(x0,k(x0﹣2)),
∵∠MOA=∠MAO,
∴x0=1,
再设H(0,yH),
联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.
△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.
由根与系数的关系得,
∴,,
MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),
令x=0,得yH=(k+)x0﹣2k,
∵BF⊥HF,
∴,
即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,
整理得:=1,即8k2=3.
∴k=﹣或k=.
【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.
20.(14分)(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.
【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;