订单查询
首页 其他文档
浙江省高考数学试卷(理科)
大小:0B 9页 发布时间: 2024-01-27 15:23:08 10.33k 9.11k

∴B+C=90°,或C=B+90°,

∴A=90°或A=45°.

【点评】本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.

17.(15分)

【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.菁优网版权所有

【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.

(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出;

方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值.

【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,

∴AC⊥平面BCK,∴BF⊥AC.

又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,

∴BF⊥平面ACFD.

(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,

∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.

在Rt△ACK中,AC=3,CK=2,可得FQ=

在Rt△BQF中,BF=,FQ=.可得:cos∠BQF=

∴二面角B﹣AD﹣F的平面角的余弦值为

方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,

取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,

以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz.

可得:B(1,0,0),C(﹣1,0,0),K(0,0,),A(﹣1,﹣3,0),

=(0,3,0),=(2,3,0).

设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得

=

,可得,取=

==

∴二面角B﹣AD﹣F的余弦值为

【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.

18.(15分)

【考点】函数最值的应用;函数的最值及其几何意义.菁优网版权所有

【分析】(Ⅰ)由a≥3,讨论x≤1时,x>1,去掉绝对值,化简x2﹣2ax+4a﹣2﹣2|x﹣1|,判断符号,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范围;

(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定义,可得F(x)的最小值;

(ii)分别对当0≤x≤2时,当2<x≤6时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).

【解答】解:(Ⅰ)由a≥3,故x≤1时,

x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;

当x>1时,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),

则等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围是(2,2a);

(Ⅱ)(i)设f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441