3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.
【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.
【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,
则应从丙种型号的产品中抽取300×=18件,
故答案为:18
【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.
4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.
【分析】直接模拟程序即得结论.
【解答】解:初始值x=,不满足x≥1,
所以y=2+log2=2﹣=﹣2,
故答案为:﹣2.
【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.
5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.
【分析】直接根据两角差的正切公式计算即可
【解答】解:∵tan(α﹣)===
∴6tanα﹣6=tanα+1,
解得tanα=,
故答案为:.
【点评】本题考查了两角差的正切公式,属于基础题
6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.
【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.
【解答】解:设球的半径为R,则球的体积为:R3,
圆柱的体积为:πR2•2R=2πR3.
则==.
故答案为:.
【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.
7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.
【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.
【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,
则D=[﹣2,3],
则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,
故答案为:
【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.
8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.
【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.
【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,
所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).
则四边形F1PF2Q的面积是:=2.