故答案为:2.
【点评】本题考查双曲线的简单性质的应用,考查计算能力.
9.(5分)(2017•江苏)等比数列{an}的各项均为实数,其前n项为Sn,已知S3=,S6=,则a8=32.
【分析】设等比数列{an}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.
【解答】解:设等比数列{an}的公比为q≠1,
∵S3=,S6=,∴=,=,
解得a1=,q=2.
则a8==32.
故答案为:32.
【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.
【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.
【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).
当且仅当x=30时取等号.
故答案为:30.
【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.
11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+ex﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].
【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.
【解答】解:函数f(x)=x3﹣2x+ex﹣的导数为:
f′(x)=3x2﹣2+ex+≥﹣2+2=0,
可得f(x)在R上递增;
又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣ex+x3﹣2x+ex﹣=0,
可得f(x)为奇函数,
则f(a﹣1)+f(2a2)≤0,
即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),
即有2a2≤1﹣a,
解得﹣1≤a≤,
故答案为:[﹣1,].
【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.
12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.
【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.
【解答】解:如图所示,建立直角坐标系.A(1,0).
由与的夹角为α,且tanα=7.
∴cosα=,sinα=.
∴C.
cos(α+45°)=(cosα﹣sinα)=.
sin(α+45°)=(sinα+cosα)=.
∴B.
∵=m+n(m,n∈R),