订单查询
首页 其他文档
江苏省高考数学试卷
大小:0B 12页 发布时间: 2024-01-27 15:31:15 10.16k 8.6k

=m﹣n,=0+n,

解得n=,m=

则m+n=3.

故答案为:3.

【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.

13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1].

【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.

【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,

=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,

化为:12x0﹣6y0+30≤0,

即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,

联立,解可得x0=﹣5或x0=1,

结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],

故答案为:[﹣5,1].

【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.

14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.

【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.

【解答】解:∵在区间[0,1)上,f(x)=

第一段函数上的点的横纵坐标均为有理数,

又f(x)是定义在R上且周期为1的函数,

∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;

同理:

区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;

区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;

区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;

区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;

区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;

区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;

区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;

在区间[9,+∞)上,f(x)的图象与y=lgx无交点;

故f(x)的图象与y=lgx有8个交点;

即方程f(x)﹣lgx=0的解的个数是8,

故答案为:8

【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.

二.解答题

15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.

求证:(1)EF∥平面ABC;

(2)AD⊥AC.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441