【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①
椭圆的准线方程x=±,由2×=8,②
由①②解得:a=2,c=1,
则b2=a2﹣c2=3,
∴椭圆的标准方程:;
(2)方法一:设P(x0,y0),则直线PF2的斜率=,
则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),
直线PF1的斜率=,
则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),
联立,解得:,则Q(﹣x0,),
由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,
∴y02=x02﹣1,
则,解得:,则,
又P在第一象限,所以P的坐标为:
P(,).
方法二:设P(m,n),由P在第一象限,则m>0,n>0,
当m=1时,不存在,解得:Q与F1重合,不满足题意,
当m≠1时,=,=,
由l1⊥PF1,l2⊥PF2,则=﹣,=﹣,
直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②
联立解得:x=﹣m,则Q(﹣m,),
由Q在椭圆方程,由对称性可得:=±n2,
即m2﹣n2=1,或m2+n2=1,
由P(m,n),在椭圆方程,,解得:,或,无解,
又P在第一象限,所以P的坐标为:
P(,).
【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.
18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.
(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.
【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,
在平面ACM中,过N作NP∥MC,交AC于点P,
∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,
又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,
∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,
∵NP∥MC,∴△ANP∽△AMC,