∴=,,得AN=16cm.
∴玻璃棒l没入水中部分的长度为16cm.
(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,
在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,
过点E作EQ⊥E1G1,交E1G1于点Q,
∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,
EG≠E1G1,
∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,
∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,
∴E1Q=24cm,
由勾股定理得:E1E=40cm,
∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,
根据正弦定理得:=,∴sin,cos,
∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,
∴EN===20cm.
∴玻璃棒l没入水中部分的长度为20cm.
【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
19.(16分)(2017•江苏)对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(1)证明:等差数列{an}是“P(3)数列”;
(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
【分析】(1)由题意可知根据等差数列的性质,an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1)═2×3an,根据“P(k)数列”的定义,可得数列{an}是“P(3)数列”;
(2)由“P(k)数列”的定义,则an﹣2+an﹣1+an+1+an+2=4an,an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an,变形整理即可求得2an=an﹣1+an+1,即可证明数列{an}是等差数列.
【解答】解:(1)证明:设等差数列{an}首项为a1,公差为d,则an=a1+(n﹣1)d,
则an﹣3+an﹣2+an﹣1+an+1+an+2+an+3,
=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1),
=2an+2an+2an,
=2×3an,
∴等差数列{an}是“P(3)数列”;
(2)证明:由数列{an}是“P(2)数列”则an﹣2+an﹣1+an+1+an+2=4an,①
数列{an}是“P(3)数列”an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an,②
由①可知:an﹣3+an﹣2+an+an+1=4an﹣1,③
an﹣1+an+an+2+an+3=4an+1,④
由②﹣(③+④):﹣2an=6an﹣4an﹣1﹣4an+1,
整理得:2an=an﹣1+an+1,
∴数列{an}是等差数列.
【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.
20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求b关于a的函数关系式,并写出定义域;