订单查询
首页 其他文档
江苏省高考数学试卷
大小:0B 12页 发布时间: 2024-01-27 15:31:15 10.16k 8.6k

(2)证明:b2>3a;

(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.

【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.

(2)通过(1)构造函数h(a)=b2﹣3a=+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;

(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为+2,进而问题转化为解不等式b﹣++2=≥﹣,因式分解即得结论.

【解答】(1)解:因为f(x)=x3+ax2+bx+1,

所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,

令g′(x)=0,解得x=﹣

由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;

所以f′(x)的极小值点为x=﹣

由于导函数f′(x)的极值点是原函数f(x)的零点,

所以f(﹣)=0,即﹣++1=0,

所以b=+(a>0).

因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,

所以f′(x)=3x2+2ax+b=0有两个不等的实根,

所以4a2﹣12b>0,即a2﹣+>0,解得a>3,

所以b=+(a>3).

(2)证明:由(1)可知h(a)=b2﹣3a=+=(4a3﹣27)(a3﹣27),

由于a>3,所以h(a)>0,即b2>3a;

(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣

设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=

所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2

=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2

=+2,

又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣

所以b﹣++2=≥﹣

因为a>3,所以2a3﹣63a﹣54≤0,

所以2a(a2﹣36)+9(a﹣6)≤0,

所以(a﹣6)(2a2+12a+9)≤0,

由于a>3时2a2+12a+9>0,

所以a﹣6≤0,解得a≤6,

所以a的取值范围是(3,6].

【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.

二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)

21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.

求证:(1)∠PAC=∠CAB;

(2)AC2 =AP•AB.

【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.

(2)由(1)可得:△APC∽△ACB,即可证明.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441