订单查询
首页 其他文档
海南省高考文科数学试题及答案(word版)
大小:0B 6页 发布时间: 2024-01-27 15:35:25 18.56k 18.31k

1.A 2.B 3.C 4.A 5.C 6.B 7.A 8.D 9.D 10.B 11.D 12.C

二、填空题

三、解答题

17.解:

d+q=3. ①

18.解:

(1)在平面ABCD内,因为∠BAD=∠ABC=90°,

所以BC∥AD.又

,故BC∥平面PAD.

(2)去AD的中点M,连结PM,CM,

及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.

因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD,因为,所以PM⊥CM.

19.解:

(1)旧养殖法的箱产量低于50kg的频率为

(0.012+0.014+0.024+0.034+0.040)×5=0.62

因此,事件A的概率估计值为0.62.

(2)根据箱产量的频率分布直方图得列联表

箱产量<50kg箱产量≥50kg

旧养殖法6238

新养殖法3466

K2=

由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.

(3)箱产量的频率分布直方图平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.

20.解:

由题意知F(-1,0),设Q(-3,t),P(m,n),则

3+3m-tn=0.

21. 解

(1)f ’(x)=(1-2x-x2)ex

令f’(x)=0得x=-1- ,x=-1+

当x∈(-∞,-1-)时,f’(x)<0;当x∈(-1-,-1+)时,f’(x)>0;当x∈(-1-,+∞)时,f’(x)<0

所以f(x)在(-∞,-1-),(-1+,+∞)单调递减,在(-1-,-1+)单调递增

(2) f (x)=(1+x)(1-x)ex

当a≥1时,设函数h(x)=(1-x)ex,h’(x)= -xex<0(x>0),因此h(x)在[0,+∞)单调递减,而h(0)=1,

故h(x)≤1,所以

f(x)=(x+1)h(x)≤x+1≤ax+1

当0<a<1时,设函数g(x)=ex-x-1,g’(x)=ex-1>0(x>0),所以g(x)在在[0,+∞)单调递增,而g(0)=0,故ex≥x+1

当0<x<1,,取

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441