【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,
从这5支彩笔中任取2支不同颜色的彩笔,
基本事件总数n==10,
取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,
∴取出的2支彩笔中含有红色彩笔的概率为p==.
故选:C.
【点评】本小题主要考查概率、古典概型、排列组合等基础知识,考查运算求解能力和推理论证能力,是基础题.
4.(5分)(2017•天津)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()
A.0 B.1 C.2 D.3
【分析】根据程序框图,进行模拟计算即可.
【解答】解:第一次N=19,不能被3整除,N=19﹣1=18≤3不成立,
第二次N=18,18能被3整除,N==6,N=6≤3不成立,
第三次N=6,能被3整除,N═=2≤3成立,
输出N=2,
故选:C
【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.
5.(5分)(2017•天津)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()
A. B. C. D.
【分析】利用三角形是正三角形,推出a,b关系,通过c=2,求解a,b,然后等到双曲线的方程.
【解答】解:双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),
可得c=2,,即,,
解得a=1,b=,双曲线的焦点坐标在x轴,所得双曲线方程为:.
故选:D.
【点评】本题考查双曲线的简单性质的应用,考查计算能力.
6.(5分)(2017•天津)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()
A.a<b<c B.b<a<c C.c<b<a D.c<a<b
【分析】根据奇函数f(x)在R上是增函数,化简a、b、c,即可得出a,b,c的大小.
【解答】解:奇函数f(x)在R上是增函数,
∴a=﹣f()=f(log25),
b=f(log24.1),
c=f(20.8),
又1<20.8<2<log24.1<log25,
∴f(20.8)<f(log24.1)<f(log25),
即c<b<a.
故选:C.
【点评】本题考查了函数的奇偶性与单调性的应用问题,是基础题.
7.(5分)(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()
A.ω=,φ= B.ω=,φ=﹣
C.ω=,φ=﹣ D.ω=,φ=