故答案为:4.
【点评】本题考查了基本不等式的应用问题,是中档题.
14.(5分)(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.
【分析】根据题意画出图形,结合图形,利用、表示出,
再根据平面向量的数量积列出方程求出λ的值.
【解答】解:如图所示,
△ABC中,∠A=60°,AB=3,AC=2,
=2,
∴=+
=+
=+(﹣)
=+,
又=λ﹣(λ∈R),
∴=(+)•(λ﹣)
=(λ﹣)•﹣+λ
=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,
∴λ=1,
解得λ=.
故答案为:.
【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
15.(13分)(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.
【分析】(Ⅰ)由正弦定理得asinB=bsinA,结合asinA=4bsinB,得a=2b.再由,得,代入余弦定理的推论可求cosA的值;
(Ⅱ)由(Ⅰ)可得,代入asinA=4bsinB,得sinB,进一步求得cosB.利用倍角公式求sin2B,cos2B,展开两角差的正弦可得sin(2B﹣A)的值.
【解答】(Ⅰ)解:由,得asinB=bsinA,
又asinA=4bsinB,得4bsinB=asinA,
两式作比得:,∴a=2b.
由,得,
由余弦定理,得;
(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.
由(Ⅰ)知,A为钝角,则B为锐角,
∴.
于是,,
故.
【点评】本题考查三角形的解法,考查正弦定理和余弦定理在解三角形中的应用,是中档题.
16.(13分)(2017•天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)