订单查询
首页 其他文档
浙江省高考数学试卷及答案
大小:0B 10页 发布时间: 2024-01-27 15:53:03 5.3k 5.28k

(Ⅲ)由≥2xn+1﹣xn得≥2()>0,继续放缩即可证明

【解答】解:(Ⅰ)用数学归纳法证明:xn>0,

当n=1时,x1=1>0,成立,

假设当n=k时成立,则xk>0,

那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,

故xn+1>0,

因此xn>0,(n∈N*)

∴xn=xn+1+ln(1+xn+1)>xn+1,

因此0<xn+1<xn(n∈N*),

(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+1﹣4xn+1+2xn=xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1),

记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0

∴f′(x)=+ln(1+x)>0,

∴f(x)在(0,+∞)上单调递增,

∴f(x)≥f(0)=0,

因此xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1)≥0,

故2xn+1﹣xn≤

(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,

∴xn≥

≥2xn+1﹣xn得≥2()>0,

≥2()≥…≥2n﹣1()=2n﹣2,

∴xn≤

综上所述≤xn≤

【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441