订单查询
首页 其他文档
浙江省高考数学试卷及答案
大小:0B 10页 发布时间: 2024-01-27 15:53:03 5.3k 5.28k

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).

(1)求f(x)的导函数;

(2)求f(x)在区间[,+∞)上的取值范围.

21.(15分)如图,已知抛物线x2=y,点A(﹣),B(),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|PA|•|PQ|的最大值.

22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,

(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤

(Ⅲ)≤xn≤

浙江省高考数学试卷参考答案

一、选择题(共10小题,每小题5分,满分50分)

1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()

A.(﹣1,2) B.(0,1) C.(﹣1,0) D.(1,2)

【分析】直接利用并集的运算法则化简求解即可.

【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},

那么P∪Q={x|﹣1<x<2}=(﹣1,2).

故选:A.

【点评】本题考查集合的基本运算,并集的求法,考查计算能力.

2.(5分)椭圆+=1的离心率是()

A. B. C. D.

【分析】直接利用椭圆的简单性质求解即可.

【解答】解:椭圆+=1,可得a=3,b=2,则c==

所以椭圆的离心率为:=

故选:B.

【点评】本题考查椭圆的简单性质的应用,考查计算能力.

3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()

A.+1 B.+3 C.+1 D.+3

【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.

【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,

圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,

故该几何体的体积为××π×12×3+××××3=+1,

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441