订单查询
首页 其他文档
普通高等学校招生全国统一考试(III卷)文科数学
大小:0B 9页 发布时间: 2024-01-27 15:54:45 12.11k 12.06k

再令x=0,可得y2+y﹣2=0,

解得y=1或﹣2.

即有圆与y轴的交点为(0,1),(0,﹣2),

则过A、B、C三点的圆在y轴上截得的弦长为定值3.

21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.

(1)讨论f(x)的单调性;

(2)当a<0时,证明f(x)≤﹣﹣2.

【解答】(1)解:因为f(x)=lnx+ax2+(2a+1)x,

求导f′(x)=+2ax+(2a+1)==,(x>0),

①当a=0时,f′(x)=+1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;

②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;

③当a<0时,令f′(x)=0,解得:x=﹣

因为当x∈(0,﹣)f′(x)>0、当x∈(﹣,+∞)f′(x)<0,

所以y=f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减.

综上可知:当a≥0时f(x)在(0,+∞)上单调递增,

当a<0时,f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减;

(2)证明:由(1)可知:当a<0时f(x)在(0,﹣)上单调递增、在(﹣,+∞)上单调递减,

所以当x=﹣时函数y=f(x)取最大值f(x)max=f(﹣)=﹣1﹣ln2﹣+ln(﹣).

从而要证f(x)≤﹣﹣2,即证f(﹣)≤﹣﹣2,

即证﹣1﹣ln2﹣+ln(﹣)≤﹣﹣2,即证﹣(﹣)+ln(﹣)≤﹣1+ln2.

令t=﹣,则t>0,问题转化为证明:﹣t+lnt≤﹣1+ln2.…(*)

令g(t)=﹣t+lnt,则g′(t)=﹣+

令g′(t)=0可知t=2,则当0<t<2时g′(t)>0,当t>2时g′(t)<0,

所以y=g(t)在(0,2)上单调递增、在(2,+∞)上单调递减,

即g(t)≤g(2)=﹣×2+ln2=﹣1+ln2,即(*)式成立,

所以当a<0时,f(x)≤﹣﹣2成立.

(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修44:坐标系与参数方程](10分)

在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.

【解答】解:(1)∵直线l1的参数方程为,(t为参数),

∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;

又直线l2的参数方程为,(m为参数),

同理可得,直线l2的普通方程为:x=﹣2+ky②;

联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;

(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,

∴其普通方程为:x+y﹣=0,

联立得:

∴ρ2=x2+y2=+=5.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441