18.(13分)(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.
(Ⅰ)若a=2,b=,求cosC的值;
(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.
19.(12分)(2014•重庆)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的单调区间与极值.
20.(12分)(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.
(Ⅰ)证明:BC⊥平面POM;
(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.
21.(12分)(2014•重庆)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.
重庆市高考数学试卷(文科)参考答案
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1.(5分)(2014•重庆)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()
A.第一象限B.第二象限C.第三象限D.第四象限
考点:复数的代数表示法及其几何意义.菁优网版权所有
专题:数系的扩充和复数.
分析:根据复数的几何意义,即可得到结论.
解答:解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.
点评:本题主要考查复数的几何意义,比较基础.
2.(5分)(2014•重庆)在等差数列{an}中,a1=2,a3+a5=10,则a7=()
A.5B.8C.10D.14
考点:等差数列的通项公式.菁优网版权所有
专题:等差数列与等比数列.
分析:由等差数列{an}中,a1=2,且有a3+a5=10,利用等差数列的通项公式先求出公差d,再求a7.
解答:解:∵等差数列{an}中,a1=2,a3+a5=10∴2+2d+2+4d=10,解得d=1,∴a7=2+6×1=8.故选:B.
点评:本题考查等差数列的性质和应用,解题时要认真审题,仔细解答,注意等差数列通项公式的合理运用.
3.(5分)(2014•重庆)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()
A.100B.150C.200D.250
考点:分层抽样方法.菁优网版权所有
专题:概率与统计.
分析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.
解答:解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.
点评:本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.
4.(5分)(2014•重庆)下列函数为偶函数的是()
A.f(x)=x﹣1B.f(x)=x2+xC.f(x)=2x﹣2﹣xD.f(x)=2x+2﹣x
考点:函数奇偶性的判断.菁优网版权所有