解答:解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,xM=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,yQ),∴tan∠OQM=tan∠ONQ,∴=,即yQ2=xM•xN,+n2=1yQ2==2,∴yQ=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)
点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.
20.(13分)(2015•北京)已知数列{an}满足:a1∈N*,a1≤36,且an+1=(n=1,2,…),记集合M={an|n∈N*}.
(Ⅰ)若a1=6,写出集合M的所有元素;
(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(Ⅲ)求集合M的元素个数的最大值.
考点:数列递推式.
专题:创新题型;点列、递归数列与数学归纳法.
分析:(Ⅰ)a1=6,利用an+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任意n≥k,an是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.
解答:解:(Ⅰ)若a1=6,由于an+1=(n=1,2,…),M={an|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数,由an+1=(n=1,2,…),可归纳证明对任意n≥k,an是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为ak=2ak﹣1,或ak=2ak﹣1﹣36,所以2ak﹣1是3的倍数;于是ak﹣1是3的倍数;类似可得,ak﹣2,…,a1都是3的倍数;从而对任意n≥1,an是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,an=(n=1,2,…),可归纳证明对任意n≥k,an<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,an是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,an是3的倍数.因此当n≥3时,an∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,an不是3的倍数.因此当n≥3时,an∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.
点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.