考点:直线与圆锥曲线的综合问题;椭圆的标准方程.菁优网版权所有
专题:圆锥曲线的定义、性质与方程.
分析:(1)通过将椭圆C的方程化成标准方程,利用离心率计算公式即得结论;(2)通过令直线AE的方程中x=3,得点M坐标,即得直线BM的斜率;(3)分直线AB的斜率不存在与存在两种情况讨论,利用韦达定理,计算即可.
解答:解:(1)∵椭圆C:x2+3y2=3,∴椭圆C的标准方程为:+y2=1,∴a=,b=1,c=,∴椭圆C的离心率e==;(2)∵AB过点D(1,0)且垂直于x轴,∴可设A(1,y1),B(1,﹣y1),∵E(2,1),∴直线AE的方程为:y﹣1=(1﹣y1)(x﹣2),令x=3,得M(3,2﹣y1),∴直线BM的斜率kBM==1;(3)结论:直线BM与直线DE平行.证明如下:当直线AB的斜率不存在时,由(2)知kBM=1,又∵直线DE的斜率kDE==1,∴BM∥DE;当直线AB的斜率存在时,设其方程为y=k(x﹣1)(k≠1),设A(x1,y1),B(x2,y2),则直线AE的方程为y﹣1=(x﹣2),令x=3,则点M(3,),∴直线BM的斜率kBM=,联立,得(1+3k2)x2﹣6k2x+3k2﹣3=0,由韦达定理,得x1+x2=,x1x2=,∵kBM﹣1====0,∴kBM=1=kDE,即BM∥DE;综上所述,直线BM与直线DE平行.
点评:本题是一道直线与椭圆的综合题,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.