今天小编为大家整理了有关于浙江省高考数学试卷(文科),希望可以对大家有帮助。
浙江省高考数学试卷(文科)
一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()
A.[3,4)B.(2,3]C.(﹣1,2)D.(﹣1,3]
2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()
A.8cm3B.12cm3C.D.
3.(5分)(2015•浙江)设a,b是实数,则“a+b>0”是“ab>0”的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
4.(5分)(2015•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m
5.(5分)(2015•浙江)函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()
A.B.C.D.
6.(5分)(2015•浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()
A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz
7.(5分)(2015•浙江)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()
A.直线B.抛物线C.椭圆D.双曲线的一支
8.(5分)(2015•浙江)设实数a,b,t满足|a+1|=|sinb|=t.()
A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定
C.若t确定,则sin唯一确定D.若t确定,则a2+a唯一确定
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
9.(6分)(2015•浙江)计算:log2=,2=.
10.(6分)(2015•浙江)已知{an}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=.
11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,最小值是.
12.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是.
13.(4分)(2015•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足•1=•=1,则||=.
14.(4分)(2015•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是.
15.(4分)(2015•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.
三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。
16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tan(+A)=2.
(Ⅰ)求的值;
(Ⅱ)若B=,a=3,求△ABC的面积.
17.(15分)(2015•浙江)已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+…+bn=bn+1﹣1(n∈N*)
(Ⅰ)求an与bn;
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.
18.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;