订单查询
首页 其他文档
浙江省高考数学试卷(文科)
大小:0B 5页 发布时间: 2024-01-27 16:16:27 12.75k 12.52k

考点:等比数列的性质.菁优网版权所有

专题:等差数列与等比数列.

分析:运用等比数列的性质,结合等差数列的通项公式,计算可得d=﹣a1,再由条件2a1+a2=1,运用等差数列的通项公式计算即可得到首项和公差.

解答:解:由a2,a3,a7成等比数列,则a32=a2a7,即有(a1+2d)2=(a1+d)(a1+6d),即2d2+3a1d=0,由公差d不为零,则d=﹣a1,又2a1+a2=1,即有2a1+a1+d=1,即3a1﹣a1=1,解得a1=,d=﹣1.故答案为:,﹣1.

点评:本题考查等差数列首项和公差的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.

11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,最小值是

考点:二倍角的余弦;三角函数的最值.菁优网版权所有

专题:三角函数的图像与性质.

分析:由三角函数恒等变换化简解析式可得f(x)=sin(2x﹣)+,由正弦函数的图象和性质即可求得最小正周期,最小值.

解答:解:∵f(x)=sin2x+sinxcosx+1=+sin2x+1=sin(2x﹣)+.∴最小正周期T=,最小值为:.故答案为:π,

点评:本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.

12.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是2﹣6.

考点:函数的最值及其几何意义.菁优网版权所有

专题:函数的性质及应用.

分析:由分段函数的特点易得f(f(﹣2))=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.

解答:解:由题意可得f(﹣2)=(﹣2)2=4,∴f(f(﹣2))=f(4)=4+﹣6=﹣;∵当x≤1时,f(x)=x2,由二次函数可知当x=0时,函数取最小值0;当x>1时,f(x)=x+﹣6,由基本不等式可得f(x)=x+﹣6≥2﹣6=2﹣6,当且仅当x=即x=时取到等号,即此时函数取最小值2﹣6;∵2﹣6<0,∴f(x)的最小值为2﹣6故答案为:﹣;2﹣6

点评:本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.

13.(4分)(2015•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足1==1,则||=

考点:平面向量数量积的性质及其运算律.菁优网版权所有

专题:平面向量及应用.

分析:根据数量积得出1,2夹角为60°,<1>=<2>=30°,运用数量积的定义判断求解即可.

解答:解:∵1,2是平面单位向量,且1•2=,∴1,2夹角为60°,∵平衡向量满足1==1∴1,2夹角相等,且为锐角,∴应该在1,2夹角的平分线上,即<1>=<2>=30°,||×1×cos30°=1,∴||=故答案为:

点评:本题简单的考查了平面向量的运算,数量积的定义,几何图形的运用,属于容易题,关键是判断夹角即可.

14.(4分)(2015•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是15.

考点:简单线性规划.菁优网版权所有

专题:不等式的解法及应用.

分析:由题意可得2x+y﹣4<0,6﹣x﹣3y>0,去绝对值后得到目标函数z=﹣3x﹣4y+10,然后结合圆心到直线的距离求得|2x+y﹣4|+|6﹣x﹣3y|的最大值.

解答:解:如图,由x2+y2≤1,可得2x+y﹣4<0,6﹣x﹣3y>0,则|2x+y﹣4|+|6﹣x﹣3y|=﹣2x﹣y+4+6﹣x﹣3y=﹣3x﹣4y+10,令z=﹣3x﹣4y+10,得,如图,要使z=﹣3x﹣4y+10最大,则直线在y轴上的截距最小,由z=﹣3x﹣4y+10,得3x+4y+z﹣10=0.则,即z=15或z=5.由题意可得z的最大值为15.故答案为:15.

点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.

15.(4分)(2015•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是

考点:椭圆的简单性质.菁优网版权所有

专题:圆锥曲线的定义、性质与方程.

分析:设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.

解答:解:不妨令c=1,设Q(m,n),由题意可得,即:,由①②可得:m=,n=,代入③可得:,解得e2(4e4﹣4e2+1)+4e2=1,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:

点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.

三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。

16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tan(+A)=2.

(Ⅰ)求的值;

(Ⅱ)若B=,a=3,求△ABC的面积.

考点:二倍角的余弦;两角和与差的正切函数.菁优网版权所有

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441