订单查询
首页 其他文档
江苏省高考数学试卷
大小:0B 6页 发布时间: 2024-01-27 16:27:05 15.06k 15.01k

专题:计算题;直线与圆.

分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.

解答:解:圆心到直线的距离d==,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.

点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.

11.(5分)

考点:数列的求和;数列递推式.菁优网版权所有

专题:等差数列与等比数列.

分析:数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.

解答:解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:

点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

12.(5分)

考点:双曲线的简单性质.菁优网版权所有

专题:计算题;圆锥曲线的定义、性质与方程.

分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.

解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:

点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.

13.(5分)

考点:根的存在性及根的个数判断.菁优网版权所有

专题:综合题;函数的性质及应用.

分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.

解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.

点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.

14.(5分)

考点:数列的求和.菁优网版权所有

专题:等差数列与等比数列;平面向量及应用.

分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.

解答:解:=+=++++=++=++,∴(ak•ak+1)=+++++++…+++++++…+=+0+0=.故答案为:9

点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.

二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)

15.(14分)

考点:余弦定理的应用;二倍角的正弦.菁优网版权所有

专题:解三角形.

分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.

解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=

点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.

16.(14分)

考点:直线与平面平行的判定;直线与平面垂直的性质.菁优网版权所有

专题:证明题;空间位置关系与距离.

分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.

解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2025 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441