18.(12分)(2016•山东)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=,求数列{cn}的前n项和Tn.
19.(12分)(2016•山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:
(I)“星队”至少猜对3个成语的概率;
(II)“星队”两轮得分之和为X的分布列和数学期望EX.
20.(13分)(2016•山东)已知f(x)=a(x﹣lnx)+,a∈R.
(I)讨论f(x)的单调性;
(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.
21.(14分)(2016•山东)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.
参考答案与试题解析
一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.
1.(5分)(2016•山东)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()
A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i
【考点】复数代数形式的乘除运算
【专题】计算题;规律型;转化思想;数系的扩充和复数.
【分析】设出复数z,通过复数方程求解即可.
【解答】解:复数z满足2z+=3﹣2i,
设z=a+bi,
可得:2a+2bi+a﹣bi=3﹣2i.
解得a=1,b=﹣2.
z=1﹣2i.
故选:B.
【点评】本题考查复数的代数形式混合运算,考查计算能力.
2.(5分)(2016•山东)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()
A.(﹣1,1) B.(0,1) C.(﹣1,+∞) D.(0,+∞)
【考点】并集及其运算
【专题】计算题;集合思想;数学模型法;集合.
【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.
【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),
B={x|x2﹣1<0}=(﹣1,1),
∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).
故选:C.
【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.