订单查询
首页 其他文档
山东高考理科数学试题及解析
大小:0B 11页 发布时间: 2024-01-27 16:31:14 15.57k 14.53k

3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()

A.56 B.60 C.120 D.140

【考点】频率分布直方图

【专题】计算题;图表型;概率与统计.

【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.

【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,

故自习时间不少于22.5小时的频率为:0.7×200=140,

故选:D

【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.

4.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()

A.4 B.9 C.10 D.12

【考点】简单线性规划

【专题】计算题;对应思想;数形结合法;不等式.

【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.

【解答】解:由约束条件作出可行域如图,

∵A(0,﹣3),C(0,2),

∴|OA|>|OC|,

联立,解得B(3,﹣1).

∴x2+y2的最大值是10.

故选:C.

【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

5.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()

A.+π B.+π C.+π D.1+π

【考点】由三视图求面积、体积

【专题】计算题;空间位置关系与距离;立体几何.

【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.

【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,

半球的直径为棱锥的底面对角线,

由棱锥的底底面棱长为1,可得2R=

故R=,故半球的体积为:=π,

棱锥的底面面积为:1,高为1,

故棱锥的体积V=

故组合体的体积为:+π,

故选:C

【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441