3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()
A.56 B.60 C.120 D.140
【考点】频率分布直方图
【专题】计算题;图表型;概率与统计.
【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.
【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,
故自习时间不少于22.5小时的频率为:0.7×200=140,
故选:D
【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.
4.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()
A.4 B.9 C.10 D.12
【考点】简单线性规划
【专题】计算题;对应思想;数形结合法;不等式.
【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.
【解答】解:由约束条件作出可行域如图,
∵A(0,﹣3),C(0,2),
∴|OA|>|OC|,
联立,解得B(3,﹣1).
∵,
∴x2+y2的最大值是10.
故选:C.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
5.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()
A.+π B.+π C.+π D.1+π
【考点】由三视图求面积、体积
【专题】计算题;空间位置关系与距离;立体几何.
【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.
【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,
半球的直径为棱锥的底面对角线,
由棱锥的底底面棱长为1,可得2R=.
故R=,故半球的体积为:=π,
棱锥的底面面积为:1,高为1,
故棱锥的体积V=,
故组合体的体积为:+π,
故选:C
【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.
6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()