订单查询
首页 其他文档
山东高考理科数学试题及解析
大小:0B 11页 发布时间: 2024-01-27 16:31:14 15.57k 14.53k

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

【考点】三角函数中的恒等变换应用;正弦定理;余弦定理

【专题】计算题;证明题;综合法;解三角形.

【分析】(Ⅰ)由切化弦公式,带入并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;

(Ⅱ)根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c2﹣2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值.

【解答】解:(Ⅰ)证明:由得:

∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;

∴2sin(A+B)=sinA+sinB;

即sinA+sinB=2sinC(1);

根据正弦定理,

,带入(1)得:

∴a+b=2c;

(Ⅱ)a+b=2c;

∴(a+b)2=a2+b2+2ab=4c2;

∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;

又a,b>0;

∴由余弦定理,=

∴cosC的最小值为

【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以及三角函数的诱导公式,正余弦定理,不等式a2+b2≥2ab的应用,不等式的性质.

17.(12分)(2016•山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.

(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;

(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.

【考点】二面角的平面角及求法;直线与平面平行的判定

【专题】证明题;转化思想;向量法;空间位置关系与距离;空间角.

【分析】(Ⅰ)取FC中点Q,连结GQ、QH,推导出平面GQH∥平面ABC,由此能证明GH∥平面ABC.

(Ⅱ)由AB=BC,知BO⊥AC,以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BC﹣A的余弦值.

【解答】证明:(Ⅰ)取FC中点Q,连结GQ、QH,

∵G、H为EC、FB的中点,

∴GQ,QH∥

又∵EFBO,∴GQBO,

∴平面GQH∥平面ABC,

∵GH⊂面GQH,∴GH∥平面ABC.

解:(Ⅱ)∵AB=BC,∴BO⊥AC,

又∵OO′⊥面ABC,

∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,

则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441