订单查询
首页 其他文档
山东高考理科数学试题及解析
大小:0B 11页 发布时间: 2024-01-27 16:31:14 15.57k 14.53k

=(﹣2,﹣,﹣3),=(2,2,0),

由题意可知面ABC的法向量为=(0,0,3),

=(x0,y0,z0)为面FCB的法向量,

,即

取x0=1,则=(1,﹣1,﹣),

∴cos<>==﹣

∵二面角F﹣BC﹣A的平面角是锐角,

∴二面角F﹣BC﹣A的余弦值为

【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

18.(12分)(2016•山东)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.

(Ⅰ)求数列{bn}的通项公式;

(Ⅱ)令cn=,求数列{cn}的前n项和Tn.

【考点】数列的求和;数列递推式

【专题】综合题;转化思想;综合法;等差数列与等比数列.

【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;

(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.

【解答】解:(Ⅰ)Sn=3n2+8n,

∴n≥2时,an=Sn﹣Sn﹣1=6n+5,

n=1时,a1=S1=11,∴an=6n+5;

∵an=bn+bn+1,

∴an﹣1=bn﹣1+bn,

∴an﹣an﹣1=bn+1﹣bn﹣1.

∴2d=6,

∴d=3,

∵a1=b1+b2,

∴11=2b1+3,

∴b1=4,

∴bn=4+3(n﹣1)=3n+1;

(Ⅱ)cn===6(n+1)•2n,

∴Tn=6[2•2+3•22+…+(n+1)•2n]①,

∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,

①﹣②可得﹣Tn=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,

∴Tn=3n•2n+2.

【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.

19.(12分)(2016•山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:

(I)“星队”至少猜对3个成语的概率;

(II)“星队”两轮得分之和为X的分布列和数学期望EX.

【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列

【专题】计算题;分类讨论;分类法;概率与统计.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441