②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;
(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.
20.(16分)(2016•江苏)记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=++…+.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1;
(3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD.
附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】
21.(10分)(2016•江苏)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.
B.【选修4—2:矩阵与变换】
22.(10分)(2016•江苏)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.
C.【选修4—4:坐标系与参数方程】
23.(2016•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.
24.(2016•江苏)设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.
附加题【必做题】
25.(10分)(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为(2﹣p,﹣p);
②求p的取值范围.
26.(10分)(2016•江苏)(1)求7C﹣4C的值;
(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.
参考答案与试题解析
一、填空题(共14小题,每小题5分,满分70分)
1.(5分)(2016•江苏)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2}.
【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.
【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},
∴A∩B={﹣1,2},
故答案为:{﹣1,2}
【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.
2.(5分)(2016•江苏)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.
【分析】利用复数的运算法则即可得出.
【解答】解:z=(1+2i)(3﹣i)=5+5i,
则z的实部是5,
故答案为:5.
【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.
3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.
【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.
【解答】解:双曲线﹣=1中,a=,b=,