【解答】解:∵{an}是等差数列,Sn是其前n项和,a1+a22=﹣3,S5=10,
∴,
解得a1=﹣4,d=3,
∴a9=﹣4+8×3=20.
故答案为:20.
【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.
【分析】画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案.
【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:
由图可知,共7个交点.
故答案为:7.
【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.
10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.
【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.
【解答】解:设右焦点F(c,0),
将y=代入椭圆方程可得x=±a=±a,
可得B(﹣a,),C(a,),
由∠BFC=90°,可得kBF•kCF=﹣1,
即有•=﹣1,
化简为b2=3a2﹣4c2,
由b2=a2﹣c2,即有3c2=2a2,
由e=,可得e2==,
可得e=,
故答案为:.
【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.
11.(5分)(2016•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.
【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.
【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,
∴f(﹣)=f(﹣)=﹣+a,
f()=f()=|﹣|=,
∴a=,
∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,
故答案为:﹣
【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a值,是解答的关键.
12.(5分)(2016•江苏)已知实数x,y满足,则x2+y2的取值范围是[,13].
【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.
【解答】解:作出不等式组对应的平面区域,
设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,