18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求直线BD与平面ACFD所成角的余弦值.
19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,
(Ⅰ)求p的值;
(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.
20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:
(Ⅰ)f(x)≥1﹣x+x2
(Ⅱ)<f(x)≤.
参考答案与试题解析
一、选择题
1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=()
A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}
【分析】先求出∁UP,再得出(∁UP)∪Q.
【解答】解:∁UP={2,4,6},
(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.
故选C.
【点评】本题考查了集合的运算,属于基础题.
2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()
A.m∥l B.m∥n C.n⊥l D.m⊥n
【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.
【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,
∴m∥β或m⊂β或m⊥β,l⊂β,
∵n⊥β,
∴n⊥l.
故选:C.
【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
3.(5分)(2016•浙江)函数y=sinx2的图象是()
A. B. C. D.
【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.
【解答】解:∵sin(﹣x)2=sinx2,
∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;
由y=sinx2=0,
则x2=kπ,k≥0,
则x=±,k≥0,
故函数有无穷多个零点,排除B,
故选:D
【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.