则由条件知f(x)≥2x,
即f(a)≥2a,则2a≤f(a)≤2b,
则a≤b,故B正确,
C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,
D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,
故选:B
【点评】本题主要考查不等式的判断和证明,根据条件,结合不等式的性质是解决本题的关键.综合性较强,有一定的难度.
8.(5分)(2016•浙江)如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则()
A.{Sn}是等差数列 B.{Sn2}是等差数列
C.{dn}是等差数列 D.{dn2}是等差数列
【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=b,|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,由于a,b不确定,判断C,D不正确,设△AnBnBn+1的底边BnBn+1上的高为hn,运用三角形相似知识,hn+hn+2=2hn+1,由Sn=d•hn,可得Sn+Sn+2=2Sn+1,进而得到数列{Sn}为等差数列.
【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,
|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,
由于a,b不确定,则{dn}不一定是等差数列,
{dn2}不一定是等差数列,
设△AnBnBn+1的底边BnBn+1上的高为hn,
由三角形的相似可得==,
==,
两式相加可得,==2,
即有hn+hn+2=2hn+1,
由Sn=d•hn,可得Sn+Sn+2=2Sn+1,
即为Sn+2﹣Sn+1=Sn+1﹣Sn,
则数列{Sn}为等差数列.
故选:A.
【点评】本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.
二、填空题
9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3.
【分析】根据几何体的三视图,得出该几何体下部为长方体,上部为正方体的组合体,结合图中数据求出它的表面积和体积即可.
【解答】解:根据几何体的三视图,得;
该几何体是下部为长方体,其长和宽都为4,高为2,
表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;
上部为正方体,其棱长为2,
表面积是6×22=24 cm2,体积为23=8cm3;
所以几何体的表面积为64+24﹣2×22=80cm2,
体积为32+8=40cm3.
故答案为:80;40.
【点评】本题考查了由三视图求几何体的表面积与体积的应用问题,也考查了空间想象和计算能力,是基础题.