∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),
∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).
∴A=2B.
(II)解:cosB=,∴sinB==.
cosA=cos2B=2cos2B﹣1=,sinA==.
∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.
【点评】本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.
17.(15分)(2016•浙江)设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.
(Ⅰ)求通项公式an;
(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.
【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{an}是公比q=3的等比数列,即可求通项公式an;
(Ⅱ)讨论n的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|an﹣n﹣2|}的前n项和.
【解答】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.
∴a1+a2=4,a2=2S1+1=2a1+1,
解得a1=1,a2=3,
当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,
两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即an+1=3an,当n=1时,a1=1,a2=3,
满足an+1=3an,
∴=3,则数列{an}是公比q=3的等比数列,
则通项公式an=3n﹣1.
(Ⅱ)an﹣n﹣2=3n﹣1﹣n﹣2,
设bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,
则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,
当n≥3时,3n﹣1﹣n﹣2>0,
则bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,
此时数列{|an﹣n﹣2|}的前n项和Tn=3+﹣=,
则Tn==.
【点评】本题主要考查递推数列的应用以及数列求和的计算,根据条件建立方程组以及利用方程组法证明列{an}是等比数列是解决本题的关键.求出过程中使用了转化法和分组法进行数列求和.
18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求直线BD与平面ACFD所成角的余弦值.
【分析】(Ⅰ)根据三棱台的定义,可知分别延长AD,BE,CF,会交于一点,并设该点为K,并且可以由平面BCFE⊥平面ABC及∠ACB=90°可以得出AC⊥平面BCK,进而得出BF⊥AC.而根据条件可以判断出点E,F分别为边BK,CK的中点,从而得出△BCK为等边三角形,进而得出BF⊥CK,从而根据线面垂直的判定定理即可得出BF⊥平面ACFD;
(Ⅱ)由BF⊥平面ACFD便可得出∠BDF为直线BD和平面ACFD所成的角,根据条件可以求出BF=,DF=,从而在Rt△BDF中可以求出BD的值,从而得出cos∠BDF的值,即得出直线BD和平面ACFD所成角的余弦值.
【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:
∵平面BCFE⊥平面ABC,且AC⊥BC;
∴AC⊥平面BCK,BF⊂平面BCK;
∴BF⊥AC;