订单查询
首页 其他文档
浙江文科高考数学试卷真题
大小:0B 9页 发布时间: 2024-01-27 16:46:05 8.95k 7.36k

又EF∥BC,BE=EF=FC=1,BC=2;

∴△BCK为等边三角形,且F为CK的中点;

∴BF⊥CK,且AC∩CK=C;

∴BF⊥平面ACFD;

(Ⅱ)∵BF⊥平面ACFD;

∴∠BDF是直线BD和平面ACFD所成的角;

∵F为CK中点,且DF∥AC;

∴DF为△ACK的中位线,且AC=3;

∴在Rt△BFD中,,cos

即直线BD和平面ACFD所成角的余弦值为

【点评】考查三角形中位线的性质,等边三角形的中线也是高线,面面垂直的性质定理,以及线面垂直的判定定理,线面角的定义及求法,直角三角形边的关系,三角函数的定义.

19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,

(Ⅰ)求p的值;

(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.

【分析】(Ⅰ)利用抛物线的性质和已知条件求出抛物线方程,进一步求得p值;

(Ⅱ)设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.

【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,

由抛物线定义得,,即p=2;

(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,

∵AF不垂直y轴,

∴设直线AF:x=sy+1(s≠0),

联立,得y2﹣4sy﹣4=0.

y1y2=﹣4,

∴B(),

又直线AB的斜率为,故直线FN的斜率为

从而得FN:,直线BN:y=﹣

则N(),

设M(m,0),由A、M、N三点共线,得

于是m==,得m<0或m>2.

经检验,m<0或m>2满足题意.

∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).

【点评】本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.

20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:

(Ⅰ)f(x)≥1﹣x+x2

(Ⅱ)<f(x)≤

【分析】(Ⅰ)根据题意,1﹣x+x2﹣x3=,利用放缩法得,即可证明结论成立;

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441