订单查询
首页 其他文档
北京市高考数学卷子
大小:0B 8页 发布时间: 2024-01-27 17:11:31 14.89k 13.3k

【考点】频率分布直方图;随机抽样和样本估计总体的实际应用.

【专题】计算题;转化思想;综合法;概率与统计.

【分析】(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,由此能求出为使80%以上居民在该用的用水价为4元/立方米,w至少定为3立方米.

(2)当w=3时,利用频率分布直方图能求出该市居民的人均水费.

【解答】解:(1)由频率分布直方图得:

用水量在[0.5,1)的频率为0.1,

用水量在[1,1.5)的频率为0.15,

用水量在[1.5,2)的频率为0.2,

用水量在[2,2.5)的频率为0.25,

用水量在[2.5,3)的频率为0.15,

用水量在[3,3.5)的频率为0.05,

用水量在[3.5,4)的频率为0.05,

用水量在[4,4.5)的频率为0.05,

∵用水量小于等于3立方米的频率为85%,

∴为使80%以上居民在该用的用水价为4元/立方米,

∴w至少定为3立方米.

(2)当w=3时,该市居民的人均水费为:

(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,

∴当w=3时,估计该市居民该月的人均水费为10.5元.

【点评】本题考查频率分布直方图的应用,考查当w=3时,该市居民该月的人均水费的估计的求法,是中档题,解题时要认真审题,注意频率分布直方图的合理运用.

18.(2016•北京)如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;

(2)求证:平面PAB⊥平面PAC;

(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.

【专题】综合题;转化思想;综合法;立体几何.

【分析】(1)利用线面垂直的判定定理证明DC⊥平面PAC;

(2)利用线面垂直的判定定理证明AB⊥平面PAC,即可证明平面PAB⊥平面PAC;

(3)在棱PB上存在中点F,使得PA∥平面CEF.利用线面平行的判定定理证明.

【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,

∴PC⊥DC,

∵DC⊥AC,PC∩AC=C,

∴DC⊥平面PAC;

(2)证明:∵AB∥DC,DC⊥AC,

∴AB⊥AC,

∵PC⊥平面ABCD,AB⊂平面ABCD,

∴PC⊥AB,

∵PC∩AC=C,

∴AB⊥平面PAC,

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441