订单查询
首页 其他文档
北京市高考数学卷子
大小:0B 8页 发布时间: 2024-01-27 17:11:31 14.89k 13.3k

∵AB⊂平面PAB,

∴平面PAB⊥平面PAC;

(3)解:在棱PB上存在中点F,使得PA∥平面CEF.

∵点E为AB的中点,

∴EF∥PA,

∵PA⊄平面CEF,EF⊂平面CEF,

∴PA∥平面CEF.

【点评】本题考查线面平行与垂直的证明,考查平面与平面垂直的证明,考查学生分析解决问题的能力,属于中档题.

19.(2016•北京)已知椭圆C:+=1过点A(2,0),B(0,1)两点.

(1)求椭圆C的方程及离心率;

(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

【考点】椭圆的标准方程;直线与椭圆的位置关系.

【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.

【分析】(1)由题意可得a=2,b=1,则,则椭圆C的方程可求,离心率为e=

(2)设P(x0,y0),求出PA、PB所在直线方程,得到M,N的坐标,求得|AN|,|BM|.由,结合P在椭圆上求得四边形ABNM的面积为定值2.

【解答】(1)解:∵椭圆C:+=1过点A(2,0),B(0,1)两点,

∴a=2,b=1,则

∴椭圆C的方程为,离心率为e=

(2)证明:如图,

设P(x0,y0),则,PA所在直线方程为y=

取x=0,得

,PB所在直线方程为

取y=0,得

∴|AN|=

|BM|=1﹣

=

=﹣==

=

∴四边形ABNM的面积为定值2.

【点评】本题考查椭圆的标准方程,考查了椭圆的简单性质,考查计算能力与推理论证能力,是中档题.

20.(2016•北京)设函数f(x)=x3+ax2+bx+c.

(1)求曲线y=f(x)在点(0,f(0))处的切线方程;

(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;

(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.

【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理.

【专题】方程思想;分析法;函数的性质及应用;导数的概念及应用.

【分析】(1)求出f(x)的导数,求得切线的斜率和切点,进而得到所求切线的方程;

(2)由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由﹣c介于极值之间,解不等式即可得到所求范围;

(3)先证若f(x)有三个不同零点,令f(x)=0,可得单调区间有3个,求出导数,由导数的图象与x轴有两个不同的交点,运用判别式大于0,可得a2﹣3b>0;再由a=b=4,c=0,可得若a2﹣3b>0,不能推出f(x)有3个零点.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441