【解答】解:(Ⅰ)由题意可得e==,
又△OAB的面积为1,可得ab=1,
且a2﹣b2=c2,
解得a=2,b=1,c=,
可得椭圆C的方程为+y2=1;
(Ⅱ)证法一:设椭圆上点P(x0,y0),
可得x02+4y02=4,
直线PA:y=(x﹣2),令x=0,可得y=﹣,
则|BM|=|1+|;
直线PB:y=x+1,令y=0,可得x=﹣,
则|AN|=|2+|.
可得|AN|•|BM|=|2+|•|1+|
=||=||
=||=4,
即有|AN|•|BM|为定值4.
证法二:设P(2cosθ,sinθ),(0≤θ<2π),
直线PA:y=(x﹣2),令x=0,可得y=﹣,
则|BM|=||;
直线PB:y=x+1,令y=0,可得x=﹣,
则|AN|=||.
即有|AN|•|BM|=||•||
=2||
=2||=4.
则|AN|•|BM|为定值4.
【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和基本量的关系,考查线段积的定值的求法,注意运用直线方程和点满足椭圆方程,考查化解在合理的运算能力,属于中档题.
20.(13分)(2016•北京)设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an﹣an﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN﹣a1.
【考点】数列与函数的综合;数学归纳法.菁优网版权所有
【专题】新定义;点列、递归数列与数学归纳法.
【分析】(Ⅰ)结合“G时刻”的定义进行分析;
(Ⅱ)可以采用假设法和递推法进行分析;
(Ⅲ)可以采用假设法和列举法进行分析.
【解答】解:(Ⅰ)根据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满足条件,2满足条件,a2>a3不满足条件,3不满足条件,
a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)={2,5}.
(Ⅱ)因为存在an>a1,设数列A中第一个大于a1的项为ak,则ak>a1≥ai,其中2≤i≤k﹣1,所以k∈G(A),G(A)≠∅;
(Ⅲ)设A数列的所有“G时刻”为i1<i2<L<ik,
对于第一个“G时刻”i1,有>a1≥ai(i=2,3,L,i1﹣1),则
﹣ai≤﹣≤1.