A班6 6.5 7 7.5 8
B班6 7 8 9 10 11 12
C班3 4.5 6 7.5 9 10.5 12 13.5
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)
17.(14分)(2016•北京)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.
18.(13分)(2016•北京)设函数f(x)=xea﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.
19.(14分)(2016•北京)已知椭圆C:+=1(a>0,b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.
20.(13分)(2016•北京)设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an﹣an﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN﹣a1.
参考答案与试题解析
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.(5分)(2016•北京)已知集合A={x||x|<2},B={﹣1,0,1,2,3},则A∩B=()
A.{0,1} B.{0,1,2} C.{﹣1,0,1} D.{﹣1,0,1,2}
【考点】交集及其运算.菁优网版权所有
【专题】计算题;转化思想;综合法;集合.
【分析】先求出集合A和B,由此利用交集的定义能求出A∩B.
【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},
B={﹣1,0,1,2,3},
∴A∩B={﹣1,0,1}.
故选:C.
【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
2.(5分)(2016•北京)若x,y满足,则2x+y的最大值为()
A.0 B.3 C.4 D.5
【考点】简单线性规划.菁优网版权所有
【专题】计算题;规律型;数形结合;函数思想;转化思想.
【分析】作出不等式组对应的平面区域,目标函数的几何意义是直线的纵截距,利用数形结合即可求z的取值范围.
【解答】解:作出不等式组对应的平面区域如图:(阴影部分).
设z=2x+y得y=﹣2x+z,