共有5×8=40种情况,
而且这些情况是等可能发生的,
当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;
当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;
当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;
当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;
当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;
故周甲的锻炼时间比乙的锻炼时间长的概率P==;
(Ⅲ)μ0>μ1.
【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.
17.(14分)(2016•北京)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.
【考点】空间中直线与平面之间的位置关系.菁优网版权所有
【专题】综合题;转化思想;综合法;立体几何.
【分析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;
(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;
(Ⅲ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得
,由此列式求得当时,M点即为所求.
【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
且AB⊥AD,AB⊂平面ABCD,
∴AB⊥平面PAD,
∵PD⊂平面PAD,
∴AB⊥PD,
又PD⊥PA,且PA∩AB=A,
∴PD⊥平面PAB;
(Ⅱ)解:取AD中点为O,连接CO,PO,
∵CD=AC=,
∴CO⊥AD,
又∵PA=PD,
∴PO⊥AD.
以O为坐标原点,建立空间直角坐标系如图:
则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),
则,,
设为平面PCD的法向量,
则由,得,则.
设PB与平面PCD的夹角为θ,则=;
(Ⅲ)解:假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),