订单查询
首页 其他文档
北京市高考理科数学试卷
大小:0B 11页 发布时间: 2024-01-27 17:18:27 8.03k 6.79k

共有5×8=40种情况,

而且这些情况是等可能发生的,

当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;

当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;

故周甲的锻炼时间比乙的锻炼时间长的概率P==

(Ⅲ)μ0>μ1.

【点评】本题考查的知识点是用样本的频率分布估计总体分布,古典概型,难度中档.

17.(14分)(2016•北京)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=

(Ⅰ)求证:PD⊥平面PAB;

(Ⅱ)求直线PB与平面PCD所成角的正弦值;

(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.

【考点】空间中直线与平面之间的位置关系.菁优网版权所有

【专题】综合题;转化思想;综合法;立体几何.

【分析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;

(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;

(Ⅲ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得

,由此列式求得当时,M点即为所求.

【解答】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

且AB⊥AD,AB⊂平面ABCD,

∴AB⊥平面PAD,

∵PD⊂平面PAD,

∴AB⊥PD,

又PD⊥PA,且PA∩AB=A,

∴PD⊥平面PAB;

(Ⅱ)解:取AD中点为O,连接CO,PO,

∵CD=AC=

∴CO⊥AD,

又∵PA=PD,

∴PO⊥AD.

以O为坐标原点,建立空间直角坐标系如图:

则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),

为平面PCD的法向量,

则由,得,则

设PB与平面PCD的夹角为θ,则=

(Ⅲ)解:假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441