订单查询
首页 其他文档
天津文科高考数学真题及答案
大小:0B 6页 发布时间: 2024-01-27 18:11:00 3.44k 2.37k

解答:解:(I)抽样比为=,故应从小学、中学、大学中分别抽取的学校数目分别为21×=3,14×=2,7×=1(II)(i)在抽取到的6所学校中,3所小学分别记为1、2、3,两所中学分别记为a、b,大学记为A则抽取2所学校的所有可能结果为{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15种(ii)设B={抽取的2所学校均为小学},事件B的所有可能结果为{1,2},{1,3},{2,3}共3种,∴P(B)==

点评:本题主要考查了统计中分层抽样的意义,古典概型概率的计算方法,列举法计数的方法,属基础题

16.(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=,cosA=﹣

(1)求sinC和b的值;

(2)求cos(2A+)的值.

考点:解三角形;三角函数中的恒等变换应用。

专题:计算题。

分析:(1)△ABC中,利用同角三角函数的基本关系求出sinA,再由正弦定理求出sinC,再由余弦定理求得b=1.(2)利用二倍角公式求得cos2A的值,由此求得sin2A,再由两角和的余弦公式求出cos(2A+)=cos2Acos﹣sin2Asin 的值.

解答:解:(1)△ABC中,由cosA=﹣ 可得sinA=.再由 = 以及a=2、c=,可得sinC=.由a2=b2+c2﹣2bc•cosA 可得b2+b﹣2=0,解得b=1.(2)由cosA=﹣、sinA= 可得 cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=﹣.故cos(2A+)=cos2Acos﹣sin2Asin=

点评:本题主要考查正弦定理和余弦定理的应用,二倍角公式以及两角和的余弦公式,同角三角函数的基本关系的应用,属于中档题.

17.(2012•天津)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.

(1)求异面直线PA与BC所成角的正切值;

(2)证明:平面PDC⊥平面ABCD;

(3)求直线PB与平面ABCD所成角的正弦值.

考点:直线与平面所成的角;异面直线及其所成的角;平面与平面垂直的判定。

专题:计算题;证明题;综合题。

分析:(1)判断∠PAD为异面直线PA与BC所成角,在Rt△PDA中,求异面直线PA与BC所成角的正切值;(2)说明AD⊥BC,通过AD⊥PD,CD∩PD=D,证明AD⊥平面PDC,然后证明平面PDC⊥平面ABCD.(3)在平面PDC中,过点P作PE⊥CD于E,连接EB.说明∠PBE为直线PB与平面ABCD所成角,求出PE,PB,在Rt△PEB中,通过sin∠PBE=,求直线PB与平面ABCD所成角的正弦值.

解答:(1)解:如图,在四棱锥P﹣ABCD中,因为底面ABCD是矩形,所以AD=BC,且AD∥BC,又因为AD⊥PD,故∠PAD为异面直线PA与BC所成角,在Rt△PDA中,=2,所以异面直线PA与BC所成角的正切值为:2.(2)证明:由于底面ABCD是矩形,故AD⊥BC,由于AD⊥PD,CD∩PD=D,因此AD⊥平面PDC,而AD⊂平面ABCD,所以平面PDC⊥平面ABCD.(3)解:在平面PDC中,过点P作PE⊥CD于E,连接EB.由于平面PDC⊥平面ABCD,而直线CD是平面PDC与平面ABCD的交线,故PE⊥平面ABCD.由此得∠PBE为直线PB与平面ABCD所成角,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,在Rt△PEC中,PE=PCsin30°=.由AD∥BC,AD⊥平面PDC,得BC⊥平面PDC,因此BC⊥PC.在Rt△PCB中,PB==.在Rt△PEB中,sin∠PBE==.所以直线PB与平面ABCD所成角的正弦值为

点评:本题考查直线与平面所成的角,异面直线及其所成的角,平面与平面垂直的判定,考查空间想象能力,计算能力.

18.(2012•天津)已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.

(1)求数列{an}与{bn}的通项公式;

(2)记Tn=anb1+an﹣1b2+…+a1bn,n∈N*,证明:Tn﹣8=an﹣1bn+1(n∈N*,n≥2).

考点:等差数列与等比数列的综合;数列的求和。

专题:计算题;证明题。

分析:(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先借助于错位相减法求出Tn的表达式;再代入所要证明的结论的两边,即可得到结论成立.

解答:解:(1)设等差数列的公差为d,等比数列的首项为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由a4+b4=27,S4﹣b4=10,得方程组,解得,所以:an=3n﹣1,bn=2n.(2)证明:由第一问得:Tn=anb1+an﹣1b2+…+a1bn=2×2+5×22+8×23+…+(3n﹣1)×2n; ①;2Tn=2×22+5×23+…+(3n﹣4)×2n+(3n﹣1)×2n+1,②.由①﹣②得,﹣Tn=2×2+3×22+3×23+…+3×2n﹣(3n﹣1)×2n+1=﹣(3n﹣1)×2n+1﹣2=﹣(3n﹣4)×2n+1﹣8.即Tn﹣8=(3n﹣4)×2n+1.而当n≥2时,an﹣1bn+1=(3n﹣4)×2n+1.∴Tn﹣8=an﹣1bn+1(n∈N*,n≥2).

点评:本题主要考察等差数列和等比数列的综合问题.解决这类问题的关键在于熟练掌握基础知识,基本方法.并考察计算能力.

19.(2012•天津)已知椭圆,点P()在椭圆上.

(1)求椭圆的离心率;

(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.

考点:直线与圆锥曲线的综合问题;椭圆的简单性质。

专题:综合题。

分析:(1)根据点P()在椭圆上,可得,由此可求椭圆的离心率;(2)设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,,根据|AQ|=|AO|,A(﹣a,0),y0=kx0,可求,由此可求直线OQ的斜率的值.

解答:解:(1)因为点P()在椭圆上,所以(2)设直线OQ的斜率为,则其方程为y=kx设点Q的坐标为(x0,y0),由条件得,消元并整理可得①∵|AQ|=|AO|,A(﹣a,0),y0=kx0,∴∵x0≠0,∴代入①,整理得∴5k4﹣22k2﹣15=0∴k2=5∴

点评:本题考查椭圆的离心率,考查直线与椭圆的位置关系,联立方程组是关键.

20.(2012•天津)已知函数f(x)=x3+x2﹣ax﹣a,x∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(﹣2,0)内恰有两个零点,求a的取值范围;

(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)﹣m(t),求函数g(t)在区间[﹣3,﹣1]上的最小值.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441