14、(2010•浙江)在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n行第n+1列的数是_________.
第1列第2列第3列…
第1行123…
第2行246…
第3行369…
……………
15、(2010•浙江)若正实数X,Y满足2X+Y+6=XY,则XY的最小值是_________.
16、(2010•浙江)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少至少达7000万元,则,x的最小值_________.
17、(2010•浙江)在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为_________.
三、解答题(共5小题,满分72分)
18、(2010•浙江)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足.
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的最大值.
19、(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.
(Ⅰ)若S5=5,求S6及a1;
(Ⅱ)求d的取值范围.
20、(2010•浙江)如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.
(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
21、(2010•浙江)已知函数f(x)=(x﹣a)2(x﹣b)(a,b∈R,a<b).
(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;
(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.
证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4.
22、(2010•浙江)已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线上.
(I)若m=2,求抛物线C的方程
(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.
答案与评分标准
一、选择题(共10小题,每小题5分,满分50分)
1、(2010•浙江)设P={x|x<1},Q={x|x2<4},则P∩Q()
A、{x|﹣1<x<2} B、{x|﹣3<x<﹣1}
C、{x|1<x<﹣4} D、{x|﹣2<x<1}
考点:交集及其运算。
专题:计算题。
分析:欲求两个集合的交集,先得化简集合Q,为了求集合Q,必须考虑二次不等式的解法,最后再根据交集的定义求解即可.
解答:解:∵x2<4得﹣2<x<2,
∴Q={x|﹣2<x<2},
∴P∩Q={x|﹣2<x<1}.