B.“若一个数的平方是正数,则它是负数”
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数”
【考点】四种命题
【专题】常规题型.
【分析】将原命题的条件与结论进行交换,得到原命题的逆命题.
【解答】解:因为一个命题的逆命题是将原命题的条件与结论进行交换,
因此逆命题为“若一个数的平方是正数,则它是负数”.
故选B.
【点评】本题考查四种命题的互相转化,解题时要正确掌握转化方法.
3.(5分)(2009•重庆)(x+2)6的展开式中x3的系数是()
A.20 B.40 C.80 D.160
【考点】二项式定理
【专题】计算题.
【分析】利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.
【解答】解:设含x3的为第r+1,
则Tr+1=C6rx6﹣r•2r,
令6﹣r=3,
得r=3,
故展开式中x3的系数为C63•23=160.
故选D.
【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
4.(5分)(2009•重庆)已知向量=(1,1),=(2,x),若+与4﹣2平行,则实数x的值是()
A.﹣2 B.0 C.1 D.2
【考点】平面向量共线(平行)的坐标表示
【分析】写出要用的两个向量的坐标,由+与4﹣2平行,根据向量共线的坐标形式的充要条件可得关于X的方程,解方程可得结果.
【解答】解:∵=(1,1),=(2,x),
∴+=(3,x+1),4﹣2=(6,4x﹣2),
由于+与4﹣2平行,
得6(x+1)﹣3(4x﹣2)=0,
解得x=2.
故选D
【点评】本题也可以这样解:因为+与4﹣2平行,则存在常数λ,使+=λ(4﹣2),即(2λ+1)=(4λ﹣1),根据向量共线的条件知,向量与共线,故x=2.
5.(5分)(2009•重庆)设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=()
A. B. C. D.n2+n
【考点】等差数列的前n项和;等比数列的性质
【专题】计算题.
【分析】设数列{an}的公差为d,由题意得(2+2d)2=2•(2+5d),解得或d=0(舍去),由此可求出数列{an}的前n项和.
【解答】解:设数列{an}的公差为d,
则根据题意得(2+2d)2=2•(2+5d),