A.1条 B.2条 C.3条 D.4条
【考点】空间中直线与平面之间的位置关系
【分析】利用圆锥的母线与底面所成的交角不变画图,即可得到结果.
【解答】解:如图,和α成300角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°,直线AC,AB都满足条件
故选B.
【点评】此题重点考查线线角,线面角的关系,以及空间想象能力,图形的对称性;
数形结合,重视空间想象能力和图形的对称性;
10.(5分)(2008•四川)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()
A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=0
【考点】函数y=Asin(ωx+φ)的图象变换
【专题】计算题.
【分析】当f(x)=sin(ωx+φ)是偶函数时,f(0)一定是函数的最值,从而得到x=0必是f(x)的极值点,即f′(0)=0,因而得到答案.
【解答】解:∵f(x)=sin(ωx+φ)是偶函数
∴由函数f(x)=sin(ωx+φ)图象特征可知x=0必是f(x)的极值点,
∴f′(0)=0
故选D
【点评】此题重点考查正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系.
11.(5分)(2008•四川)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()
A.13 B.2 C. D.
【考点】函数的值
【专题】压轴题.
【分析】根据f(1)=2,f(x)•f(x+2)=13先求出f(3)=,再由f(3)求出f(5),依次求出f(7)、f(9)观察规律可求出f(x)的解析式,最终得到答案.
【解答】解:∵f(x)•f(x+2)=13且f(1)=2
∴,
,
,
,
∴,
∴
故选C.
【点评】此题重点考查递推关系下的函数求值;此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解.
12.(5分)(2008•四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()
A.4 B.8 C.16 D.32
【考点】抛物线的简单性质
【专题】计算题;压轴题.
【分析】根据抛物线的方程可知焦点坐标和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0),根据及AF=AB=x0﹣(﹣2)=x0+2,进而可求得A点坐标,进而求得△AFK的面积.
【解答】解:∵抛物线C:y2=8x的焦点为F(2,0),准线为x=﹣2
∴K(﹣2,0)
设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0)
∵,又AF=AB=x0﹣(﹣2)=x0+2
∴由BK2=AK2﹣AB2得y02=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4)
∴△AFK的面积为