15.(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=﹣16.
考点:平面向量数量积的运算。
专题:计算题。
分析:设∠AMB=θ,则∠AMC=π﹣θ,再由 =( ﹣)•( ﹣)以及两个向量的数量积的定义求出结果.
解答:解:设∠AMB=θ,则∠AMC=π﹣θ.又=﹣,=﹣,∴=( ﹣)•( ﹣)=•﹣•﹣•+,=﹣25﹣5×3cosθ﹣3×5cos(π﹣θ)+9=﹣16,故答案为﹣16.
点评:本题主要考查两个向量的数量积的定义,属于基础题.
16.(2012•浙江)设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则=.
考点:函数的周期性;函数奇偶性的性质;函数的值。
专题:计算题。
分析:利用函数的周期性先把转化成f(),再利用函数f(x)是定义在R上的偶函数转化成f(),代入已知求解即可.
解答:解:∵函数f(x)是定义在R上的周期为2的函数,∴=f(+2)=f(),又∵函数f(x)是定义在R上的偶函数,∴f()=f(),又∵当x∈[0,1]时,f(x)=x+1,∴有:f()=+1=,则=.故答案为.
点评:本题主要考查函数的性质中的周期性和奇偶性,属于基础题,应熟练掌握.
17.(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.
考点:利用导数研究曲线上某点切线方程;点到直线的距离公式。
专题:计算题。
分析:先根据定义求出曲线C2:x2+(y+4)2=2到直线l:y=x的距离,然后根据曲线C1:y=x2+a的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.
解答:解:圆x2+(y+4)2=2的圆心为(0,﹣4),半径为圆心到直线y=x的距离为=2∴曲线C2:x2+(y+4)2=2到直线l:y=x的距离为2﹣=则曲线C1:y=x2+a到直线l:y=x的距离等于令y′=2x=1解得x=,故切点为(,+a)切线方程为y﹣(+a)=x﹣即x﹣y﹣+a=0由题意可知x﹣y﹣+a=0与直线y=x的距离为即解得a=或﹣当a=﹣时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去故答案为:
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及点到直线的距离的计算,同时考查了分析求解的能力,属于中档题.
三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.
18.(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
考点:解三角形。
专题:计算题。
分析:(1)将已知的等式利用正弦定理化简,根据sinA不为0,等式两边同时除以sinA,再利用同角三角函数间的基本关系求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由正弦定理化简sinC=2sinA,得到关于a与c的方程,记作①,再由b及cosB的值,利用余弦定理列出关于a与c的另一个方程,记作②,联立①②即可求出a与c的值.
解答:解:(1)由bsinA=acosB及正弦定理=,得:sinBsinA=sinAcosB,∵A为三角形的内角,∴sinA≠0,∴sinB=cosB,即tanB=,又B为三角形的内角,∴B=;(2)由sinC=2sinA及正弦定理=,得:c=2a①,∵b=3,cosB=,∴由余弦定理b2=a2+c2﹣2accosB得:9=a2+c2﹣ac②,联立①②解得:a=,c=2.
点评:此题属于解直角三角形的题型,涉及的知识有:正弦、余弦定理,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.
19.(2012•浙江)已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求数列{an•bn}的前n项和Tn.
考点:数列的求和;等差关系的确定;等比关系的确定。
专题:计算题。
分析:(I)由Sn=2n2+n可得,当n=1时,可求a1=,当n≥2时,由an=sn﹣sn﹣1可求通项,进而可求bn(II)由(I)知,,利用错位相减可求数列的和
解答:解(I)由Sn=2n2+n可得,当n=1时,a1=s1=3当n≥2时,an=sn﹣sn﹣1=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1而n=1,a1=4﹣1=3适合上式,故an=4n﹣1,又∵足an=4log2bn+3=4n﹣1∴(II)由(I)知,2Tn=3×2+7×22+…+(4n﹣5)•2n﹣1+(4n﹣1)•2n∴=(4n﹣1)•2n=(4n﹣1)•2n﹣[3+4(2n﹣2)]=(4n﹣5)•2n+5
点评:本题主要考查了数列的递推公式在数列的通项公式求解中的应用,数列求和的错位相减求和方法的应用.
20.(2012•浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:
(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.