13.(4分)(2012•山东)若不等式|kx﹣4|≤2的解集为{x|1≤x≤3},则实数k=2.
考点:绝对值不等式.菁优网版权所有
专题:不等式的解法及应用.
分析:|kx﹣4|≤2⇔(kx﹣4)2≤4,由题意可知1和3是方程k2x2﹣8kx+12=0的两根,有韦达定理即可求得k的值.
解答:解:∵|kx﹣4|≤2,∴(kx﹣4)2≤4,即k2x2﹣8kx+12≤0,∵不等式|kx﹣4|≤2的解集为{x|1≤x≤3},∴1和3是方程k2x2﹣8kx+12=0的两根,∴1+3=,∴k=2.故答案为2.
点评:本题考查绝对值不等式,将|kx﹣4|≤2转化为(kx﹣4)2≤4是关键,考查等价转化的思想与利用韦达定理解决问题的能力,属于基础题.,
14.(4分)(2012•山东)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1﹣EDF的体积为.
考点:棱柱、棱锥、棱台的体积;棱柱的结构特征.菁优网版权所有
专题:空间位置关系与距离;立体几何.
分析:将三棱锥D1﹣EDF选择△D1ED为底面,F为顶点,进行等体积转化V D1﹣EDF=V F﹣D1ED后体积易求.
解答:解:将三棱锥D1﹣EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:
点评:本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.
15.(4分)(2012•山东)设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.
考点:定积分在求面积中的应用.菁优网版权所有
专题:函数的性质及应用.
分析:利用定积分表示图形的面积,从而可建立方程,由此可求a的值.
解答:解:由题意,曲线y=与直线x=a,y=0所围成封闭图形的面积为==,∴=a2,∴a=.故答案为:.
点评:本题考查利用定积分求面积,确定被积区间与被积函数是解题的关键.
16.(4分)(2012•山东)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为(2﹣sin2,1﹣cos2).
考点:圆的参数方程;平面向量坐标表示的应用.菁优网版权所有
专题:平面向量及应用;坐标系和参数方程.
分析:设滚动后圆的圆心为O',切点为A,连接O'P.过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ,则根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(2,1),算出θ=﹣2,结合三角函数的诱导公式,化简可得P的坐标为(2﹣sin2,1﹣cos2),即为向量的坐标.
解答:解:设滚动后的圆的圆心为O',切点为A(2,0),连接O'P,过O'作与x轴正方向平行的射线,交圆O'于B(3,1),设∠BO'P=θ∵⊙O'的方程为(x﹣2)2+(y﹣1)2=1,∴根据圆的参数方程,得P的坐标为(2+cosθ,1+sinθ),∵单位圆的圆心的初始位置在(0,1),圆滚动到圆心位于(2,1)∴∠AO'P=2,可得θ=﹣2可得cosθ=cos(﹣2)=﹣sin2,sinθ=sin(﹣2)=﹣cos2,代入上面所得的式子,得到P的坐标为(2﹣sin2,1﹣cos2)∴的坐标为(2﹣sin2,1﹣cos2).故答案为:(2﹣sin2,1﹣cos2)
点评:本题根据半径为1的圆的滚动,求一个向量的坐标,着重考查了圆的参数方程和平面向量的坐标表示的应用等知识点,属于中档题.
三、解答题:本大题共6小题,共74分.
17.(12分)(2012•山东)已知向量=(sinx,1),=(Acosx,cos2x)(A>0),函数f(x)=•的最大值为6.
(Ⅰ)求A;
(Ⅱ)将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,]上的值域.
考点:三角函数的最值;平面向量数量积的坐标表示、模、夹角;正弦函数的定义域和值域;函数y=Asin(ωx+φ)的图象变换.菁优网版权所有
专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.
分析:(Ⅰ)利用向量的数量积展开,通过二倍角公式以及两角和的正弦函数化为,一个角的一个三角函数的形式,通过最大值求A;(Ⅱ)通过将函数y=f(x)的图象像左平移个单位,再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象.求出g(x)的表达式,通过x∈[0,]求出函数的值域.
解答:解:(Ⅰ)函数f(x)=•==A()=Asin(2x+).因为A>0,由题意可知A=6.(Ⅱ)由(Ⅰ)f(x)=6sin(2x+).将函数y=f(x)的图象向左平移个单位后得到,y=6sin[2(x+)+]=6sin(2x+).的图象.再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=6sin(4x+)的图象.因此g(x)=6sin(4x+).因为x∈[0,],所以4x+,4x+=时取得最大值6,4x+=时函数取得最小值﹣3.故g(x)在[0,]上的值域为[﹣3,6].
点评:本题考查三角函数的最值,平面向量数量积的坐标表示、模、夹角,正弦函数的定义域和值域,函数y=Asin(ωx+φ)的图象变换,考查计算能力.
18.(12分)(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.
考点:用空间向量求平面间的夹角;直线与平面垂直的判定;向量语言表述线面的垂直、平行关系;二面角的平面角及求法.菁优网版权所有